Metamath Proof Explorer


Theorem syl3an1

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an1.1 φ ψ
syl3an1.2 ψ χ θ τ
Assertion syl3an1 φ χ θ τ

Proof

Step Hyp Ref Expression
1 syl3an1.1 φ ψ
2 syl3an1.2 ψ χ θ τ
3 1 3anim1i φ χ θ ψ χ θ
4 3 2 syl φ χ θ τ