Metamath Proof Explorer


Theorem syl3an1br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an1br.1 ψ φ
syl3an1br.2 ψ χ θ τ
Assertion syl3an1br φ χ θ τ

Proof

Step Hyp Ref Expression
1 syl3an1br.1 ψ φ
2 syl3an1br.2 ψ χ θ τ
3 1 biimpri φ ψ
4 3 2 syl3an1 φ χ θ τ