Metamath Proof Explorer


Theorem syl3an2

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syl3an2.1 φ χ
syl3an2.2 ψ χ θ τ
Assertion syl3an2 ψ φ θ τ

Proof

Step Hyp Ref Expression
1 syl3an2.1 φ χ
2 syl3an2.2 ψ χ θ τ
3 1 3anim2i ψ φ θ ψ χ θ
4 3 2 syl ψ φ θ τ