Metamath Proof Explorer


Theorem syl3an2br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an2br.1 χ φ
syl3an2br.2 ψ χ θ τ
Assertion syl3an2br ψ φ θ τ

Proof

Step Hyp Ref Expression
1 syl3an2br.1 χ φ
2 syl3an2br.2 ψ χ θ τ
3 1 biimpri φ χ
4 3 2 syl3an2 ψ φ θ τ