Metamath Proof Explorer


Theorem syl3an3

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syl3an3.1 φ θ
syl3an3.2 ψ χ θ τ
Assertion syl3an3 ψ χ φ τ

Proof

Step Hyp Ref Expression
1 syl3an3.1 φ θ
2 syl3an3.2 ψ χ θ τ
3 1 3anim3i ψ χ φ ψ χ θ
4 3 2 syl ψ χ φ τ