Metamath Proof Explorer


Theorem syl3an3br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an3br.1 θ φ
syl3an3br.2 ψ χ θ τ
Assertion syl3an3br ψ χ φ τ

Proof

Step Hyp Ref Expression
1 syl3an3br.1 θ φ
2 syl3an3br.2 ψ χ θ τ
3 1 biimpri φ θ
4 3 2 syl3an3 ψ χ φ τ