Metamath Proof Explorer
Description: Nested syllogism inference conjoining 3 dissimilar antecedents.
(Contributed by NM, 1-May-1995)
|
|
Ref |
Expression |
|
Hypotheses |
syl3an9b.1 |
|
|
|
syl3an9b.2 |
|
|
|
syl3an9b.3 |
|
|
Assertion |
syl3an9b |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3an9b.1 |
|
2 |
|
syl3an9b.2 |
|
3 |
|
syl3an9b.3 |
|
4 |
1 2
|
sylan9bb |
|
5 |
4 3
|
sylan9bb |
|
6 |
5
|
3impa |
|