Metamath Proof Explorer


Theorem syl3an9b

Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995)

Ref Expression
Hypotheses syl3an9b.1 φ ψ χ
syl3an9b.2 θ χ τ
syl3an9b.3 η τ ζ
Assertion syl3an9b φ θ η ψ ζ

Proof

Step Hyp Ref Expression
1 syl3an9b.1 φ ψ χ
2 syl3an9b.2 θ χ τ
3 syl3an9b.3 η τ ζ
4 1 2 sylan9bb φ θ ψ τ
5 4 3 sylan9bb φ θ η ψ ζ
6 5 3impa φ θ η ψ ζ