Metamath Proof Explorer
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anbr.1 |
|
|
|
syl3anbr.2 |
|
|
|
syl3anbr.3 |
|
|
|
syl3anbr.4 |
|
|
Assertion |
syl3anbr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl3anbr.1 |
|
| 2 |
|
syl3anbr.2 |
|
| 3 |
|
syl3anbr.3 |
|
| 4 |
|
syl3anbr.4 |
|
| 5 |
1
|
bicomi |
|
| 6 |
2
|
bicomi |
|
| 7 |
3
|
bicomi |
|
| 8 |
5 6 7 4
|
syl3anb |
|