Metamath Proof Explorer
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anbr.1 |
|
|
|
syl3anbr.2 |
|
|
|
syl3anbr.3 |
|
|
|
syl3anbr.4 |
|
|
Assertion |
syl3anbr |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3anbr.1 |
|
2 |
|
syl3anbr.2 |
|
3 |
|
syl3anbr.3 |
|
4 |
|
syl3anbr.4 |
|
5 |
1
|
bicomi |
|
6 |
2
|
bicomi |
|
7 |
3
|
bicomi |
|
8 |
5 6 7 4
|
syl3anb |
|