Metamath Proof Explorer


Theorem syl3anbr

Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses syl3anbr.1 ψ φ
syl3anbr.2 θ χ
syl3anbr.3 η τ
syl3anbr.4 ψ θ η ζ
Assertion syl3anbr φ χ τ ζ

Proof

Step Hyp Ref Expression
1 syl3anbr.1 ψ φ
2 syl3anbr.2 θ χ
3 syl3anbr.3 η τ
4 syl3anbr.4 ψ θ η ζ
5 1 bicomi φ ψ
6 2 bicomi χ θ
7 3 bicomi τ η
8 5 6 7 4 syl3anb φ χ τ ζ