Metamath Proof Explorer


Theorem syl3anl

Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006)

Ref Expression
Hypotheses syl3anl.1 φ ψ
syl3anl.2 χ θ
syl3anl.3 τ η
syl3anl.4 ψ θ η ζ σ
Assertion syl3anl φ χ τ ζ σ

Proof

Step Hyp Ref Expression
1 syl3anl.1 φ ψ
2 syl3anl.2 χ θ
3 syl3anl.3 τ η
4 syl3anl.4 ψ θ η ζ σ
5 1 2 3 3anim123i φ χ τ ψ θ η
6 5 4 sylan φ χ τ ζ σ