Metamath Proof Explorer


Theorem syl3anl

Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006)

Ref Expression
Hypotheses syl3anl.1 φψ
syl3anl.2 χθ
syl3anl.3 τη
syl3anl.4 ψθηζσ
Assertion syl3anl φχτζσ

Proof

Step Hyp Ref Expression
1 syl3anl.1 φψ
2 syl3anl.2 χθ
3 syl3anl.3 τη
4 syl3anl.4 ψθηζσ
5 1 2 3 3anim123i φχτψθη
6 5 4 sylan φχτζσ