Metamath Proof Explorer


Theorem syl3anl1

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl1.1 φ ψ
syl3anl1.2 ψ χ θ τ η
Assertion syl3anl1 φ χ θ τ η

Proof

Step Hyp Ref Expression
1 syl3anl1.1 φ ψ
2 syl3anl1.2 ψ χ θ τ η
3 1 3anim1i φ χ θ ψ χ θ
4 3 2 sylan φ χ θ τ η