Metamath Proof Explorer


Theorem syl3anl2

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anl2.1 φ χ
syl3anl2.2 ψ χ θ τ η
Assertion syl3anl2 ψ φ θ τ η

Proof

Step Hyp Ref Expression
1 syl3anl2.1 φ χ
2 syl3anl2.2 ψ χ θ τ η
3 1 3anim2i ψ φ θ ψ χ θ
4 3 2 sylan ψ φ θ τ η