Metamath Proof Explorer


Theorem syl3anr1

Description: A syllogism inference. (Contributed by NM, 31-Jul-2007)

Ref Expression
Hypotheses syl3anr1.1 φ ψ
syl3anr1.2 χ ψ θ τ η
Assertion syl3anr1 χ φ θ τ η

Proof

Step Hyp Ref Expression
1 syl3anr1.1 φ ψ
2 syl3anr1.2 χ ψ θ τ η
3 1 3anim1i φ θ τ ψ θ τ
4 3 2 sylan2 χ φ θ τ η