Metamath Proof Explorer


Theorem syl3anr2

Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anr2.1 φ θ
syl3anr2.2 χ ψ θ τ η
Assertion syl3anr2 χ ψ φ τ η

Proof

Step Hyp Ref Expression
1 syl3anr2.1 φ θ
2 syl3anr2.2 χ ψ θ τ η
3 1 3anim2i ψ φ τ ψ θ τ
4 3 2 sylan2 χ ψ φ τ η