Metamath Proof Explorer


Theorem syl3anr3

Description: A syllogism inference. (Contributed by NM, 23-Aug-2007)

Ref Expression
Hypotheses syl3anr3.1 φ τ
syl3anr3.2 χ ψ θ τ η
Assertion syl3anr3 χ ψ θ φ η

Proof

Step Hyp Ref Expression
1 syl3anr3.1 φ τ
2 syl3anr3.2 χ ψ θ τ η
3 1 3anim3i ψ θ φ ψ θ τ
4 3 2 sylan2 χ ψ θ φ η