Metamath Proof Explorer


Theorem syl5ibr

Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994)

Ref Expression
Hypotheses syl5ibr.1 φ θ
syl5ibr.2 χ ψ θ
Assertion syl5ibr χ φ ψ

Proof

Step Hyp Ref Expression
1 syl5ibr.1 φ θ
2 syl5ibr.2 χ ψ θ
3 2 bicomd χ θ ψ
4 1 3 syl5ib χ φ ψ