Metamath Proof Explorer


Theorem syl5impVD

Description: Virtual deduction proof of syl5imp . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.

1:: |- (. ( ph -> ( ps -> ch ) ) ->. ( ph -> ( ps -> ch ) ) ).
2:1,?: e1a |- (. ( ph -> ( ps -> ch ) ) ->. ( ps -> ( ph -> ch ) ) ).
3:: |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ps ) ).
4:3,2,?: e21 |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ( ph -> ch ) ) ).
5:4,?: e2 |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( ph -> ( th -> ch ) ) ).
6:5: |- (. ( ph -> ( ps -> ch ) ) ->. ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ).
qed:6: |- ( ( ph -> ( ps -> ch ) ) -> ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion syl5impVD φ ψ χ θ ψ φ θ χ

Proof

Step Hyp Ref Expression
1 idn2 φ ψ χ , θ ψ θ ψ
2 idn1 φ ψ χ φ ψ χ
3 pm2.04 φ ψ χ ψ φ χ
4 2 3 e1a φ ψ χ ψ φ χ
5 imim1 θ ψ ψ φ χ θ φ χ
6 1 4 5 e21 φ ψ χ , θ ψ θ φ χ
7 pm2.04 θ φ χ φ θ χ
8 6 7 e2 φ ψ χ , θ ψ φ θ χ
9 8 in2 φ ψ χ θ ψ φ θ χ
10 9 in1 φ ψ χ θ ψ φ θ χ