Metamath Proof Explorer
Description: A syllogism deduction combined with conjoining antecedents.
(Contributed by Alan Sare, 28-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
syl6an.1 |
|
|
|
syl6an.2 |
|
|
|
syl6an.3 |
|
|
Assertion |
syl6an |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl6an.1 |
|
2 |
|
syl6an.2 |
|
3 |
|
syl6an.3 |
|
4 |
3
|
ex |
|
5 |
1 2 4
|
sylsyld |
|