Metamath Proof Explorer


Theorem syl6c

Description: Inference combining syl6 with contraction. (Contributed by Alan Sare, 2-May-2011)

Ref Expression
Hypotheses syl6c.1 φ ψ χ
syl6c.2 φ ψ θ
syl6c.3 χ θ τ
Assertion syl6c φ ψ τ

Proof

Step Hyp Ref Expression
1 syl6c.1 φ ψ χ
2 syl6c.2 φ ψ θ
3 syl6c.3 χ θ τ
4 1 3 syl6 φ ψ θ τ
5 2 4 mpdd φ ψ τ