Metamath Proof Explorer


Theorem syl6ci

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012)

Ref Expression
Hypotheses syl6ci.1 φ ψ χ
syl6ci.2 φ θ
syl6ci.3 χ θ τ
Assertion syl6ci φ ψ τ

Proof

Step Hyp Ref Expression
1 syl6ci.1 φ ψ χ
2 syl6ci.2 φ θ
3 syl6ci.3 χ θ τ
4 2 a1d φ ψ θ
5 1 4 3 syl6c φ ψ τ