Metamath Proof Explorer


Theorem syl6ib

Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses syl6ib.1 φ ψ χ
syl6ib.2 χ θ
Assertion syl6ib φ ψ θ

Proof

Step Hyp Ref Expression
1 syl6ib.1 φ ψ χ
2 syl6ib.2 χ θ
3 2 biimpi χ θ
4 1 3 syl6 φ ψ θ