Metamath Proof Explorer


Theorem syl6ibr

Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypotheses syl6ibr.1 φ ψ χ
syl6ibr.2 θ χ
Assertion syl6ibr φ ψ θ

Proof

Step Hyp Ref Expression
1 syl6ibr.1 φ ψ χ
2 syl6ibr.2 θ χ
3 2 biimpri χ θ
4 1 3 syl6 φ ψ θ