Metamath Proof Explorer


Theorem syl7bi

Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses syl7bi.1 φ ψ
syl7bi.2 χ θ ψ τ
Assertion syl7bi χ θ φ τ

Proof

Step Hyp Ref Expression
1 syl7bi.1 φ ψ
2 syl7bi.2 χ θ ψ τ
3 1 biimpi φ ψ
4 3 2 syl7 χ θ φ τ