Metamath Proof Explorer


Theorem syl8

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994) (Proof shortened by Wolf Lammen, 3-Aug-2012)

Ref Expression
Hypotheses syl8.1 φ ψ χ θ
syl8.2 θ τ
Assertion syl8 φ ψ χ τ

Proof

Step Hyp Ref Expression
1 syl8.1 φ ψ χ θ
2 syl8.2 θ τ
3 2 a1i φ θ τ
4 1 3 syl6d φ ψ χ τ