Metamath Proof Explorer


Theorem syl8ib

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses syl8ib.1 φ ψ χ θ
syl8ib.2 θ τ
Assertion syl8ib φ ψ χ τ

Proof

Step Hyp Ref Expression
1 syl8ib.1 φ ψ χ θ
2 syl8ib.2 θ τ
3 2 biimpi θ τ
4 1 3 syl8 φ ψ χ τ