Metamath Proof Explorer


Theorem sylan

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan.1 φ ψ
sylan.2 ψ χ θ
Assertion sylan φ χ θ

Proof

Step Hyp Ref Expression
1 sylan.1 φ ψ
2 sylan.2 ψ χ θ
3 2 expcom χ ψ θ
4 1 3 mpan9 φ χ θ