Metamath Proof Explorer


Theorem sylan2d

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses sylan2d.1 φ ψ χ
sylan2d.2 φ θ χ τ
Assertion sylan2d φ θ ψ τ

Proof

Step Hyp Ref Expression
1 sylan2d.1 φ ψ χ
2 sylan2d.2 φ θ χ τ
3 2 ancomsd φ χ θ τ
4 1 3 syland φ ψ θ τ
5 4 ancomsd φ θ ψ τ