Metamath Proof Explorer
Description: Nested syllogism inference conjoining dissimilar antecedents.
(Contributed by NM, 4-Mar-1995)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9bb.1 |
|
|
|
sylan9bb.2 |
|
|
Assertion |
sylan9bb |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylan9bb.1 |
|
| 2 |
|
sylan9bb.2 |
|
| 3 |
1
|
adantr |
|
| 4 |
2
|
adantl |
|
| 5 |
3 4
|
bitrd |
|