Metamath Proof Explorer
Description: Nested syllogism inference conjoining dissimilar antecedents.
(Contributed by NM, 4-Mar-1995)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9bbr.1 |
|
|
|
sylan9bbr.2 |
|
|
Assertion |
sylan9bbr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylan9bbr.1 |
|
| 2 |
|
sylan9bbr.2 |
|
| 3 |
1 2
|
sylan9bb |
|
| 4 |
3
|
ancoms |
|