Metamath Proof Explorer


Theorem sylan9r

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses sylan9r.1 φ ψ χ
sylan9r.2 θ χ τ
Assertion sylan9r θ φ ψ τ

Proof

Step Hyp Ref Expression
1 sylan9r.1 φ ψ χ
2 sylan9r.2 θ χ τ
3 1 2 syl9r θ φ ψ τ
4 3 imp θ φ ψ τ