Metamath Proof Explorer


Theorem sylan9req

Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007)

Ref Expression
Hypotheses sylan9req.1 φ B = A
sylan9req.2 ψ B = C
Assertion sylan9req φ ψ A = C

Proof

Step Hyp Ref Expression
1 sylan9req.1 φ B = A
2 sylan9req.2 ψ B = C
3 1 eqcomd φ A = B
4 3 2 sylan9eq φ ψ A = C