Metamath Proof Explorer


Theorem sylan9ss

Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Hypotheses sylan9ss.1 φ A B
sylan9ss.2 ψ B C
Assertion sylan9ss φ ψ A C

Proof

Step Hyp Ref Expression
1 sylan9ss.1 φ A B
2 sylan9ss.2 ψ B C
3 sstr A B B C A C
4 1 2 3 syl2an φ ψ A C