Metamath Proof Explorer


Theorem sylan9ssr

Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004)

Ref Expression
Hypotheses sylan9ssr.1 φ A B
sylan9ssr.2 ψ B C
Assertion sylan9ssr ψ φ A C

Proof

Step Hyp Ref Expression
1 sylan9ssr.1 φ A B
2 sylan9ssr.2 ψ B C
3 1 2 sylan9ss φ ψ A C
4 3 ancoms ψ φ A C