Metamath Proof Explorer


Theorem sylanblc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblc.1 φ ψ
sylanblc.2 χ
sylanblc.3 ψ χ θ
Assertion sylanblc φ θ

Proof

Step Hyp Ref Expression
1 sylanblc.1 φ ψ
2 sylanblc.2 χ
3 sylanblc.3 ψ χ θ
4 3 biimpi ψ χ θ
5 1 2 4 sylancl φ θ