Metamath Proof Explorer
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
sylanblrc.1 |
|
|
|
sylanblrc.2 |
|
|
|
sylanblrc.3 |
|
|
Assertion |
sylanblrc |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylanblrc.1 |
|
2 |
|
sylanblrc.2 |
|
3 |
|
sylanblrc.3 |
|
4 |
2
|
a1i |
|
5 |
1 4 3
|
sylanbrc |
|