Metamath Proof Explorer
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
sylanblrc.1 |
|
|
|
sylanblrc.2 |
|
|
|
sylanblrc.3 |
|
|
Assertion |
sylanblrc |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylanblrc.1 |
|
| 2 |
|
sylanblrc.2 |
|
| 3 |
|
sylanblrc.3 |
|
| 4 |
2
|
a1i |
|
| 5 |
1 4 3
|
sylanbrc |
|