Metamath Proof Explorer


Theorem sylancb

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancb.1 φ ψ
sylancb.2 φ χ
sylancb.3 ψ χ θ
Assertion sylancb φ θ

Proof

Step Hyp Ref Expression
1 sylancb.1 φ ψ
2 sylancb.2 φ χ
3 sylancb.3 ψ χ θ
4 1 2 3 syl2anb φ φ θ
5 4 anidms φ θ