Metamath Proof Explorer


Theorem sylancbr

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancbr.1 ψ φ
sylancbr.2 χ φ
sylancbr.3 ψ χ θ
Assertion sylancbr φ θ

Proof

Step Hyp Ref Expression
1 sylancbr.1 ψ φ
2 sylancbr.2 χ φ
3 sylancbr.3 ψ χ θ
4 1 2 3 syl2anbr φ φ θ
5 4 anidms φ θ