Metamath Proof Explorer


Theorem syland

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syland.1 φ ψ χ
syland.2 φ χ θ τ
Assertion syland φ ψ θ τ

Proof

Step Hyp Ref Expression
1 syland.1 φ ψ χ
2 syland.2 φ χ θ τ
3 2 expd φ χ θ τ
4 1 3 syld φ ψ θ τ
5 4 impd φ ψ θ τ