Metamath Proof Explorer


Theorem sylbb

Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019)

Ref Expression
Hypotheses sylbb.1 φ ψ
sylbb.2 ψ χ
Assertion sylbb φ χ

Proof

Step Hyp Ref Expression
1 sylbb.1 φ ψ
2 sylbb.2 ψ χ
3 2 biimpi ψ χ
4 1 3 sylbi φ χ