Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
sylbb
Next ⟩
biimpr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sylbb
Description:
A mixed syllogism inference from two biconditionals.
(Contributed by
BJ
, 30-Mar-2019)
Ref
Expression
Hypotheses
sylbb.1
⊢
φ
↔
ψ
sylbb.2
⊢
ψ
↔
χ
Assertion
sylbb
⊢
φ
→
χ
Proof
Step
Hyp
Ref
Expression
1
sylbb.1
⊢
φ
↔
ψ
2
sylbb.2
⊢
ψ
↔
χ
3
2
biimpi
⊢
ψ
→
χ
4
1
3
sylbi
⊢
φ
→
χ