Metamath Proof Explorer


Theorem syld3an2

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an2.1 φ χ θ ψ
syld3an2.2 φ ψ θ τ
Assertion syld3an2 φ χ θ τ

Proof

Step Hyp Ref Expression
1 syld3an2.1 φ χ θ ψ
2 syld3an2.2 φ ψ θ τ
3 simp1 φ χ θ φ
4 simp3 φ χ θ θ
5 3 1 4 2 syl3anc φ χ θ τ