Metamath Proof Explorer


Theorem syldanl

Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses syldanl.1 φ ψ χ
syldanl.2 φ χ θ τ
Assertion syldanl φ ψ θ τ

Proof

Step Hyp Ref Expression
1 syldanl.1 φ ψ χ
2 syldanl.2 φ χ θ τ
3 1 ex φ ψ χ
4 3 imdistani φ ψ φ χ
5 4 2 sylan φ ψ θ τ