Metamath Proof Explorer
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff
Madsen, 20-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
syldanl.1 |
|
|
|
syldanl.2 |
|
|
Assertion |
syldanl |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syldanl.1 |
|
2 |
|
syldanl.2 |
|
3 |
1
|
ex |
|
4 |
3
|
imdistani |
|
5 |
4 2
|
sylan |
|