Metamath Proof Explorer


Theorem sylnbir

Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnbir.1 ψ φ
sylnbir.2 ¬ ψ χ
Assertion sylnbir ¬ φ χ

Proof

Step Hyp Ref Expression
1 sylnbir.1 ψ φ
2 sylnbir.2 ¬ ψ χ
3 1 bicomi φ ψ
4 3 2 sylnbi ¬ φ χ