| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow1.x |
|
| 2 |
|
sylow1.g |
|
| 3 |
|
sylow1.f |
|
| 4 |
|
sylow1.p |
|
| 5 |
|
sylow1.n |
|
| 6 |
|
sylow1.d |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
cbvmptv |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
mpteq2dv |
|
| 13 |
10 12
|
eqtrid |
|
| 14 |
13
|
rneqd |
|
| 15 |
|
mpteq1 |
|
| 16 |
15
|
rneqd |
|
| 17 |
14 16
|
cbvmpov |
|
| 18 |
|
preq12 |
|
| 19 |
18
|
sseq1d |
|
| 20 |
|
oveq2 |
|
| 21 |
|
id |
|
| 22 |
20 21
|
eqeqan12d |
|
| 23 |
22
|
rexbidv |
|
| 24 |
19 23
|
anbi12d |
|
| 25 |
24
|
cbvopabv |
|
| 26 |
1 2 3 4 5 6 7 8 17 25
|
sylow1lem3 |
|
| 27 |
2
|
adantr |
|
| 28 |
3
|
adantr |
|
| 29 |
4
|
adantr |
|
| 30 |
5
|
adantr |
|
| 31 |
6
|
adantr |
|
| 32 |
|
simprl |
|
| 33 |
|
eqid |
|
| 34 |
|
simprr |
|
| 35 |
1 27 28 29 30 31 7 8 17 25 32 33 34
|
sylow1lem5 |
|
| 36 |
26 35
|
rexlimddv |
|