| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow1.x |  | 
						
							| 2 |  | sylow1.g |  | 
						
							| 3 |  | sylow1.f |  | 
						
							| 4 |  | sylow1.p |  | 
						
							| 5 |  | sylow1.n |  | 
						
							| 6 |  | sylow1.d |  | 
						
							| 7 |  | sylow1lem.a |  | 
						
							| 8 |  | sylow1lem.s |  | 
						
							| 9 |  | sylow1lem.m |  | 
						
							| 10 |  | sylow1lem3.1 |  | 
						
							| 11 |  | sylow1lem4.b |  | 
						
							| 12 |  | sylow1lem4.h |  | 
						
							| 13 |  | fveqeq2 |  | 
						
							| 14 | 13 8 | elrab2 |  | 
						
							| 15 | 11 14 | sylib |  | 
						
							| 16 | 15 | simprd |  | 
						
							| 17 |  | prmnn |  | 
						
							| 18 | 4 17 | syl |  | 
						
							| 19 | 18 5 | nnexpcld |  | 
						
							| 20 | 16 19 | eqeltrd |  | 
						
							| 21 | 20 | nnne0d |  | 
						
							| 22 |  | hasheq0 |  | 
						
							| 23 | 22 | necon3bid |  | 
						
							| 24 | 11 23 | syl |  | 
						
							| 25 | 21 24 | mpbid |  | 
						
							| 26 |  | n0 |  | 
						
							| 27 | 25 26 | sylib |  | 
						
							| 28 | 11 | adantr |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 |  | oveq2 |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | ovex |  | 
						
							| 33 | 30 31 32 | fvmpt |  | 
						
							| 34 | 29 33 | syl |  | 
						
							| 35 |  | ovex |  | 
						
							| 36 | 35 31 | fnmpti |  | 
						
							| 37 |  | fnfvelrn |  | 
						
							| 38 | 36 29 37 | sylancr |  | 
						
							| 39 | 34 38 | eqeltrrd |  | 
						
							| 40 | 12 | ssrab3 |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 40 41 | sselid |  | 
						
							| 43 | 11 | ad2antrr |  | 
						
							| 44 |  | mptexg |  | 
						
							| 45 |  | rnexg |  | 
						
							| 46 | 43 44 45 | 3syl |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 |  | simpl |  | 
						
							| 49 | 48 | oveq1d |  | 
						
							| 50 | 47 49 | mpteq12dv |  | 
						
							| 51 | 50 | rneqd |  | 
						
							| 52 | 51 9 | ovmpoga |  | 
						
							| 53 | 42 43 46 52 | syl3anc |  | 
						
							| 54 | 39 53 | eleqtrrd |  | 
						
							| 55 |  | oveq1 |  | 
						
							| 56 | 55 | eqeq1d |  | 
						
							| 57 | 56 12 | elrab2 |  | 
						
							| 58 | 57 | simprbi |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 54 59 | eleqtrd |  | 
						
							| 61 | 60 | ex |  | 
						
							| 62 | 2 | ad2antrr |  | 
						
							| 63 |  | simprl |  | 
						
							| 64 | 40 63 | sselid |  | 
						
							| 65 |  | simprr |  | 
						
							| 66 | 40 65 | sselid |  | 
						
							| 67 | 15 | simpld |  | 
						
							| 68 | 67 | elpwid |  | 
						
							| 69 | 68 | sselda |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 1 7 | grprcan |  | 
						
							| 72 | 62 64 66 70 71 | syl13anc |  | 
						
							| 73 | 72 | ex |  | 
						
							| 74 | 61 73 | dom2d |  | 
						
							| 75 | 28 74 | mpd |  | 
						
							| 76 | 27 75 | exlimddv |  | 
						
							| 77 |  | ssfi |  | 
						
							| 78 | 3 40 77 | sylancl |  | 
						
							| 79 | 3 68 | ssfid |  | 
						
							| 80 |  | hashdom |  | 
						
							| 81 | 78 79 80 | syl2anc |  | 
						
							| 82 | 76 81 | mpbird |  | 
						
							| 83 | 82 16 | breqtrd |  |