Metamath Proof Explorer


Theorem sylow1lem5

Description: Lemma for sylow1 . Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly P ^ N . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses sylow1.x X = Base G
sylow1.g φ G Grp
sylow1.f φ X Fin
sylow1.p φ P
sylow1.n φ N 0
sylow1.d φ P N X
sylow1lem.a + ˙ = + G
sylow1lem.s S = s 𝒫 X | s = P N
sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
sylow1lem3.1 ˙ = x y | x y S g X g ˙ x = y
sylow1lem4.b φ B S
sylow1lem4.h H = u X | u ˙ B = B
sylow1lem5.l φ P pCnt B ˙ P pCnt X N
Assertion sylow1lem5 φ h SubGrp G h = P N

Proof

Step Hyp Ref Expression
1 sylow1.x X = Base G
2 sylow1.g φ G Grp
3 sylow1.f φ X Fin
4 sylow1.p φ P
5 sylow1.n φ N 0
6 sylow1.d φ P N X
7 sylow1lem.a + ˙ = + G
8 sylow1lem.s S = s 𝒫 X | s = P N
9 sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
10 sylow1lem3.1 ˙ = x y | x y S g X g ˙ x = y
11 sylow1lem4.b φ B S
12 sylow1lem4.h H = u X | u ˙ B = B
13 sylow1lem5.l φ P pCnt B ˙ P pCnt X N
14 1 2 3 4 5 6 7 8 9 sylow1lem2 φ ˙ G GrpAct S
15 1 12 gastacl ˙ G GrpAct S B S H SubGrp G
16 14 11 15 syl2anc φ H SubGrp G
17 1 2 3 4 5 6 7 8 9 10 11 12 sylow1lem4 φ H P N
18 10 1 gaorber ˙ G GrpAct S ˙ Er S
19 14 18 syl φ ˙ Er S
20 erdm ˙ Er S dom ˙ = S
21 19 20 syl φ dom ˙ = S
22 11 21 eleqtrrd φ B dom ˙
23 ecdmn0 B dom ˙ B ˙
24 22 23 sylib φ B ˙
25 pwfi X Fin 𝒫 X Fin
26 3 25 sylib φ 𝒫 X Fin
27 8 ssrab3 S 𝒫 X
28 ssfi 𝒫 X Fin S 𝒫 X S Fin
29 26 27 28 sylancl φ S Fin
30 19 ecss φ B ˙ S
31 29 30 ssfid φ B ˙ Fin
32 hashnncl B ˙ Fin B ˙ B ˙
33 31 32 syl φ B ˙ B ˙
34 24 33 mpbird φ B ˙
35 4 34 pccld φ P pCnt B ˙ 0
36 35 nn0red φ P pCnt B ˙
37 5 nn0red φ N
38 1 grpbn0 G Grp X
39 2 38 syl φ X
40 hashnncl X Fin X X
41 3 40 syl φ X X
42 39 41 mpbird φ X
43 4 42 pccld φ P pCnt X 0
44 43 nn0red φ P pCnt X
45 leaddsub P pCnt B ˙ N P pCnt X P pCnt B ˙ + N P pCnt X P pCnt B ˙ P pCnt X N
46 36 37 44 45 syl3anc φ P pCnt B ˙ + N P pCnt X P pCnt B ˙ P pCnt X N
47 13 46 mpbird φ P pCnt B ˙ + N P pCnt X
48 eqid G ~ QG H = G ~ QG H
49 1 12 48 10 orbsta2 ˙ G GrpAct S B S X Fin X = B ˙ H
50 14 11 3 49 syl21anc φ X = B ˙ H
51 50 oveq2d φ P pCnt X = P pCnt B ˙ H
52 34 nnzd φ B ˙
53 34 nnne0d φ B ˙ 0
54 eqid 0 G = 0 G
55 54 subg0cl H SubGrp G 0 G H
56 16 55 syl φ 0 G H
57 56 ne0d φ H
58 12 ssrab3 H X
59 ssfi X Fin H X H Fin
60 3 58 59 sylancl φ H Fin
61 hashnncl H Fin H H
62 60 61 syl φ H H
63 57 62 mpbird φ H
64 63 nnzd φ H
65 63 nnne0d φ H 0
66 pcmul P B ˙ B ˙ 0 H H 0 P pCnt B ˙ H = P pCnt B ˙ + P pCnt H
67 4 52 53 64 65 66 syl122anc φ P pCnt B ˙ H = P pCnt B ˙ + P pCnt H
68 51 67 eqtrd φ P pCnt X = P pCnt B ˙ + P pCnt H
69 47 68 breqtrd φ P pCnt B ˙ + N P pCnt B ˙ + P pCnt H
70 4 63 pccld φ P pCnt H 0
71 70 nn0red φ P pCnt H
72 37 71 36 leadd2d φ N P pCnt H P pCnt B ˙ + N P pCnt B ˙ + P pCnt H
73 69 72 mpbird φ N P pCnt H
74 pcdvdsb P H N 0 N P pCnt H P N H
75 4 64 5 74 syl3anc φ N P pCnt H P N H
76 73 75 mpbid φ P N H
77 prmnn P P
78 4 77 syl φ P
79 78 5 nnexpcld φ P N
80 79 nnzd φ P N
81 dvdsle P N H P N H P N H
82 80 63 81 syl2anc φ P N H P N H
83 76 82 mpd φ P N H
84 hashcl H Fin H 0
85 60 84 syl φ H 0
86 85 nn0red φ H
87 79 nnred φ P N
88 86 87 letri3d φ H = P N H P N P N H
89 17 83 88 mpbir2and φ H = P N
90 fveqeq2 h = H h = P N H = P N
91 90 rspcev H SubGrp G H = P N h SubGrp G h = P N
92 16 89 91 syl2anc φ h SubGrp G h = P N