| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2.x |
|
| 2 |
|
sylow2.f |
|
| 3 |
|
sylow2.h |
|
| 4 |
|
sylow2.k |
|
| 5 |
|
sylow2.a |
|
| 6 |
|
sylow2.d |
|
| 7 |
2
|
adantr |
|
| 8 |
|
slwsubg |
|
| 9 |
4 8
|
syl |
|
| 10 |
|
simprl |
|
| 11 |
|
eqid |
|
| 12 |
1 5 6 11
|
conjsubg |
|
| 13 |
9 10 12
|
syl2an2r |
|
| 14 |
1
|
subgss |
|
| 15 |
13 14
|
syl |
|
| 16 |
7 15
|
ssfid |
|
| 17 |
|
simprr |
|
| 18 |
1 2 3
|
slwhash |
|
| 19 |
1 2 4
|
slwhash |
|
| 20 |
18 19
|
eqtr4d |
|
| 21 |
|
slwsubg |
|
| 22 |
3 21
|
syl |
|
| 23 |
1
|
subgss |
|
| 24 |
22 23
|
syl |
|
| 25 |
2 24
|
ssfid |
|
| 26 |
1
|
subgss |
|
| 27 |
9 26
|
syl |
|
| 28 |
2 27
|
ssfid |
|
| 29 |
|
hashen |
|
| 30 |
25 28 29
|
syl2anc |
|
| 31 |
20 30
|
mpbid |
|
| 32 |
1 5 6 11
|
conjsubgen |
|
| 33 |
9 10 32
|
syl2an2r |
|
| 34 |
|
entr |
|
| 35 |
31 33 34
|
syl2an2r |
|
| 36 |
|
fisseneq |
|
| 37 |
16 17 35 36
|
syl3anc |
|
| 38 |
|
eqid |
|
| 39 |
38
|
slwpgp |
|
| 40 |
3 39
|
syl |
|
| 41 |
1 2 22 9 5 40 19 6
|
sylow2b |
|
| 42 |
37 41
|
reximddv |
|