Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2a.x |
|
2 |
|
sylow2a.m |
|
3 |
|
sylow2a.p |
|
4 |
|
sylow2a.f |
|
5 |
|
sylow2a.y |
|
6 |
|
sylow2a.z |
|
7 |
|
sylow2a.r |
|
8 |
1 2 3 4 5 6 7
|
sylow2alem2 |
|
9 |
|
inass |
|
10 |
|
disjdif |
|
11 |
10
|
ineq2i |
|
12 |
|
in0 |
|
13 |
9 11 12
|
3eqtri |
|
14 |
13
|
a1i |
|
15 |
|
inundif |
|
16 |
15
|
eqcomi |
|
17 |
16
|
a1i |
|
18 |
|
pwfi |
|
19 |
5 18
|
sylib |
|
20 |
7 1
|
gaorber |
|
21 |
2 20
|
syl |
|
22 |
21
|
qsss |
|
23 |
19 22
|
ssfid |
|
24 |
5
|
adantr |
|
25 |
22
|
sselda |
|
26 |
25
|
elpwid |
|
27 |
24 26
|
ssfid |
|
28 |
|
hashcl |
|
29 |
27 28
|
syl |
|
30 |
29
|
nn0cnd |
|
31 |
14 17 23 30
|
fsumsplit |
|
32 |
21 5
|
qshash |
|
33 |
|
inss1 |
|
34 |
|
ssfi |
|
35 |
23 33 34
|
sylancl |
|
36 |
|
ax-1cn |
|
37 |
|
fsumconst |
|
38 |
35 36 37
|
sylancl |
|
39 |
|
elin |
|
40 |
|
eqid |
|
41 |
|
sseq1 |
|
42 |
|
velpw |
|
43 |
41 42
|
bitr4di |
|
44 |
|
breq1 |
|
45 |
43 44
|
imbi12d |
|
46 |
21
|
adantr |
|
47 |
|
simpr |
|
48 |
46 47
|
erref |
|
49 |
|
vex |
|
50 |
49 49
|
elec |
|
51 |
48 50
|
sylibr |
|
52 |
|
ssel |
|
53 |
51 52
|
syl5com |
|
54 |
1 2 3 4 5 6 7
|
sylow2alem1 |
|
55 |
49
|
ensn1 |
|
56 |
54 55
|
eqbrtrdi |
|
57 |
56
|
ex |
|
58 |
57
|
adantr |
|
59 |
53 58
|
syld |
|
60 |
40 45 59
|
ectocld |
|
61 |
60
|
impr |
|
62 |
39 61
|
sylan2b |
|
63 |
|
en1b |
|
64 |
62 63
|
sylib |
|
65 |
64
|
fveq2d |
|
66 |
|
vuniex |
|
67 |
|
hashsng |
|
68 |
66 67
|
ax-mp |
|
69 |
65 68
|
eqtrdi |
|
70 |
69
|
sumeq2dv |
|
71 |
6
|
ssrab3 |
|
72 |
|
ssfi |
|
73 |
5 71 72
|
sylancl |
|
74 |
|
hashcl |
|
75 |
73 74
|
syl |
|
76 |
75
|
nn0cnd |
|
77 |
76
|
mulid1d |
|
78 |
6 5
|
rabexd |
|
79 |
|
eqid |
|
80 |
7
|
relopabiv |
|
81 |
|
relssdmrn |
|
82 |
80 81
|
ax-mp |
|
83 |
|
erdm |
|
84 |
21 83
|
syl |
|
85 |
84 5
|
eqeltrd |
|
86 |
|
errn |
|
87 |
21 86
|
syl |
|
88 |
87 5
|
eqeltrd |
|
89 |
85 88
|
xpexd |
|
90 |
|
ssexg |
|
91 |
82 89 90
|
sylancr |
|
92 |
|
simpr |
|
93 |
71 92
|
sselid |
|
94 |
|
ecelqsg |
|
95 |
91 93 94
|
syl2an2r |
|
96 |
54 95
|
eqeltrrd |
|
97 |
|
snelpwi |
|
98 |
97
|
adantl |
|
99 |
96 98
|
elind |
|
100 |
|
simpr |
|
101 |
100
|
elin2d |
|
102 |
101
|
elpwid |
|
103 |
64 102
|
eqsstrrd |
|
104 |
66
|
snss |
|
105 |
103 104
|
sylibr |
|
106 |
|
sneq |
|
107 |
106
|
eqeq2d |
|
108 |
64 107
|
syl5ibrcom |
|
109 |
108
|
adantrl |
|
110 |
|
unieq |
|
111 |
49
|
unisn |
|
112 |
110 111
|
eqtr2di |
|
113 |
109 112
|
impbid1 |
|
114 |
79 99 105 113
|
f1o2d |
|
115 |
78 114
|
hasheqf1od |
|
116 |
115
|
oveq1d |
|
117 |
77 116
|
eqtr3d |
|
118 |
38 70 117
|
3eqtr4rd |
|
119 |
118
|
oveq1d |
|
120 |
31 32 119
|
3eqtr4rd |
|
121 |
|
hashcl |
|
122 |
5 121
|
syl |
|
123 |
122
|
nn0cnd |
|
124 |
|
diffi |
|
125 |
23 124
|
syl |
|
126 |
|
eldifi |
|
127 |
126 30
|
sylan2 |
|
128 |
125 127
|
fsumcl |
|
129 |
123 76 128
|
subaddd |
|
130 |
120 129
|
mpbird |
|
131 |
8 130
|
breqtrrd |
|