Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2b.x |
|
2 |
|
sylow2b.xf |
|
3 |
|
sylow2b.h |
|
4 |
|
sylow2b.k |
|
5 |
|
sylow2b.a |
|
6 |
|
sylow2b.r |
|
7 |
|
sylow2b.m |
|
8 |
|
simp2 |
|
9 |
6
|
ovexi |
|
10 |
|
simp3 |
|
11 |
|
ecelqsg |
|
12 |
9 10 11
|
sylancr |
|
13 |
|
simpr |
|
14 |
|
simpl |
|
15 |
14
|
oveq1d |
|
16 |
13 15
|
mpteq12dv |
|
17 |
16
|
rneqd |
|
18 |
|
ecexg |
|
19 |
9 18
|
ax-mp |
|
20 |
19
|
mptex |
|
21 |
20
|
rnex |
|
22 |
17 7 21
|
ovmpoa |
|
23 |
8 12 22
|
syl2anc |
|
24 |
1 6
|
eqger |
|
25 |
4 24
|
syl |
|
26 |
25
|
ecss |
|
27 |
2 26
|
ssfid |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
vex |
|
30 |
|
elecg |
|
31 |
29 10 30
|
sylancr |
|
32 |
31
|
biimpa |
|
33 |
|
subgrcl |
|
34 |
3 33
|
syl |
|
35 |
34
|
3ad2ant1 |
|
36 |
1
|
subgss |
|
37 |
3 36
|
syl |
|
38 |
37
|
3ad2ant1 |
|
39 |
38 8
|
sseldd |
|
40 |
1 5
|
grpcl |
|
41 |
35 39 10 40
|
syl3anc |
|
42 |
41
|
adantr |
|
43 |
35
|
adantr |
|
44 |
39
|
adantr |
|
45 |
1
|
subgss |
|
46 |
4 45
|
syl |
|
47 |
|
eqid |
|
48 |
1 47 5 6
|
eqgval |
|
49 |
34 46 48
|
syl2anc |
|
50 |
49
|
3ad2ant1 |
|
51 |
50
|
biimpa |
|
52 |
51
|
simp2d |
|
53 |
1 5
|
grpcl |
|
54 |
43 44 52 53
|
syl3anc |
|
55 |
1 47
|
grpinvcl |
|
56 |
35 41 55
|
syl2anc |
|
57 |
56
|
adantr |
|
58 |
1 5
|
grpass |
|
59 |
43 57 44 52 58
|
syl13anc |
|
60 |
1 5 47
|
grpinvadd |
|
61 |
35 39 10 60
|
syl3anc |
|
62 |
1 47
|
grpinvcl |
|
63 |
35 10 62
|
syl2anc |
|
64 |
|
eqid |
|
65 |
1 5 47 64
|
grpsubval |
|
66 |
63 39 65
|
syl2anc |
|
67 |
61 66
|
eqtr4d |
|
68 |
67
|
oveq1d |
|
69 |
1 5 64
|
grpnpcan |
|
70 |
35 63 39 69
|
syl3anc |
|
71 |
68 70
|
eqtrd |
|
72 |
71
|
oveq1d |
|
73 |
72
|
adantr |
|
74 |
59 73
|
eqtr3d |
|
75 |
51
|
simp3d |
|
76 |
74 75
|
eqeltrd |
|
77 |
1 47 5 6
|
eqgval |
|
78 |
34 46 77
|
syl2anc |
|
79 |
78
|
3ad2ant1 |
|
80 |
79
|
adantr |
|
81 |
42 54 76 80
|
mpbir3and |
|
82 |
|
ovex |
|
83 |
|
ovex |
|
84 |
82 83
|
elec |
|
85 |
81 84
|
sylibr |
|
86 |
32 85
|
syldan |
|
87 |
86
|
fmpttd |
|
88 |
87
|
frnd |
|
89 |
|
eqid |
|
90 |
1 5 89
|
grplmulf1o |
|
91 |
35 39 90
|
syl2anc |
|
92 |
|
f1of1 |
|
93 |
91 92
|
syl |
|
94 |
25
|
ecss |
|
95 |
94
|
3ad2ant1 |
|
96 |
|
f1ssres |
|
97 |
93 95 96
|
syl2anc |
|
98 |
|
resmpt |
|
99 |
|
f1eq1 |
|
100 |
95 98 99
|
3syl |
|
101 |
97 100
|
mpbid |
|
102 |
|
f1f1orn |
|
103 |
101 102
|
syl |
|
104 |
19
|
f1oen |
|
105 |
|
ensym |
|
106 |
103 104 105
|
3syl |
|
107 |
4
|
3ad2ant1 |
|
108 |
1 6
|
eqgen |
|
109 |
107 12 108
|
syl2anc |
|
110 |
|
ensym |
|
111 |
109 110
|
syl |
|
112 |
|
ecelqsg |
|
113 |
9 41 112
|
sylancr |
|
114 |
1 6
|
eqgen |
|
115 |
107 113 114
|
syl2anc |
|
116 |
|
entr |
|
117 |
111 115 116
|
syl2anc |
|
118 |
|
entr |
|
119 |
106 117 118
|
syl2anc |
|
120 |
|
fisseneq |
|
121 |
28 88 119 120
|
syl3anc |
|
122 |
23 121
|
eqtrd |
|