Metamath Proof Explorer


Theorem sylow2blem3

Description: Sylow's second theorem. Putting together the results of sylow2a and the orbit-stabilizer theorem to show that P does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some g e. X with h g K = g K for all h e. H . This implies that invg ( g ) h g e. K , so h is in the conjugated subgroup g K invg ( g ) . (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2b.x X = Base G
sylow2b.xf φ X Fin
sylow2b.h φ H SubGrp G
sylow2b.k φ K SubGrp G
sylow2b.a + ˙ = + G
sylow2b.r ˙ = G ~ QG K
sylow2b.m · ˙ = x H , y X / ˙ ran z y x + ˙ z
sylow2blem3.hp φ P pGrp G 𝑠 H
sylow2blem3.kn φ K = P P pCnt X
sylow2blem3.d - ˙ = - G
Assertion sylow2blem3 φ g X H ran x K g + ˙ x - ˙ g

Proof

Step Hyp Ref Expression
1 sylow2b.x X = Base G
2 sylow2b.xf φ X Fin
3 sylow2b.h φ H SubGrp G
4 sylow2b.k φ K SubGrp G
5 sylow2b.a + ˙ = + G
6 sylow2b.r ˙ = G ~ QG K
7 sylow2b.m · ˙ = x H , y X / ˙ ran z y x + ˙ z
8 sylow2blem3.hp φ P pGrp G 𝑠 H
9 sylow2blem3.kn φ K = P P pCnt X
10 sylow2blem3.d - ˙ = - G
11 pgpprm P pGrp G 𝑠 H P
12 8 11 syl φ P
13 subgrcl H SubGrp G G Grp
14 3 13 syl φ G Grp
15 1 grpbn0 G Grp X
16 14 15 syl φ X
17 hashnncl X Fin X X
18 2 17 syl φ X X
19 16 18 mpbird φ X
20 pcndvds2 P X ¬ P X P P pCnt X
21 12 19 20 syl2anc φ ¬ P X P P pCnt X
22 1 6 4 2 lagsubg2 φ X = X / ˙ K
23 22 oveq1d φ X K = X / ˙ K K
24 9 oveq2d φ X K = X P P pCnt X
25 pwfi X Fin 𝒫 X Fin
26 2 25 sylib φ 𝒫 X Fin
27 1 6 eqger K SubGrp G ˙ Er X
28 4 27 syl φ ˙ Er X
29 28 qsss φ X / ˙ 𝒫 X
30 26 29 ssfid φ X / ˙ Fin
31 hashcl X / ˙ Fin X / ˙ 0
32 30 31 syl φ X / ˙ 0
33 32 nn0cnd φ X / ˙
34 eqid 0 G = 0 G
35 34 subg0cl K SubGrp G 0 G K
36 4 35 syl φ 0 G K
37 36 ne0d φ K
38 1 subgss K SubGrp G K X
39 4 38 syl φ K X
40 2 39 ssfid φ K Fin
41 hashnncl K Fin K K
42 40 41 syl φ K K
43 37 42 mpbird φ K
44 43 nncnd φ K
45 43 nnne0d φ K 0
46 33 44 45 divcan4d φ X / ˙ K K = X / ˙
47 23 24 46 3eqtr3d φ X P P pCnt X = X / ˙
48 47 breq2d φ P X P P pCnt X P X / ˙
49 21 48 mtbid φ ¬ P X / ˙
50 prmz P P
51 12 50 syl φ P
52 32 nn0zd φ X / ˙
53 ssrab2 z X / ˙ | u Base G 𝑠 H u · ˙ z = z X / ˙
54 ssfi X / ˙ Fin z X / ˙ | u Base G 𝑠 H u · ˙ z = z X / ˙ z X / ˙ | u Base G 𝑠 H u · ˙ z = z Fin
55 30 53 54 sylancl φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z Fin
56 hashcl z X / ˙ | u Base G 𝑠 H u · ˙ z = z Fin z X / ˙ | u Base G 𝑠 H u · ˙ z = z 0
57 55 56 syl φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z 0
58 57 nn0zd φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z
59 eqid Base G 𝑠 H = Base G 𝑠 H
60 1 2 3 4 5 6 7 sylow2blem2 φ · ˙ G 𝑠 H GrpAct X / ˙
61 eqid G 𝑠 H = G 𝑠 H
62 61 subgbas H SubGrp G H = Base G 𝑠 H
63 3 62 syl φ H = Base G 𝑠 H
64 1 subgss H SubGrp G H X
65 3 64 syl φ H X
66 2 65 ssfid φ H Fin
67 63 66 eqeltrrd φ Base G 𝑠 H Fin
68 eqid z X / ˙ | u Base G 𝑠 H u · ˙ z = z = z X / ˙ | u Base G 𝑠 H u · ˙ z = z
69 eqid x y | x y X / ˙ g Base G 𝑠 H g · ˙ x = y = x y | x y X / ˙ g Base G 𝑠 H g · ˙ x = y
70 59 60 8 67 30 68 69 sylow2a φ P X / ˙ z X / ˙ | u Base G 𝑠 H u · ˙ z = z
71 dvdssub2 P X / ˙ z X / ˙ | u Base G 𝑠 H u · ˙ z = z P X / ˙ z X / ˙ | u Base G 𝑠 H u · ˙ z = z P X / ˙ P z X / ˙ | u Base G 𝑠 H u · ˙ z = z
72 51 52 58 70 71 syl31anc φ P X / ˙ P z X / ˙ | u Base G 𝑠 H u · ˙ z = z
73 49 72 mtbid φ ¬ P z X / ˙ | u Base G 𝑠 H u · ˙ z = z
74 hasheq0 z X / ˙ | u Base G 𝑠 H u · ˙ z = z Fin z X / ˙ | u Base G 𝑠 H u · ˙ z = z = 0 z X / ˙ | u Base G 𝑠 H u · ˙ z = z =
75 55 74 syl φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z = 0 z X / ˙ | u Base G 𝑠 H u · ˙ z = z =
76 dvds0 P P 0
77 51 76 syl φ P 0
78 breq2 z X / ˙ | u Base G 𝑠 H u · ˙ z = z = 0 P z X / ˙ | u Base G 𝑠 H u · ˙ z = z P 0
79 77 78 syl5ibrcom φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z = 0 P z X / ˙ | u Base G 𝑠 H u · ˙ z = z
80 75 79 sylbird φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z = P z X / ˙ | u Base G 𝑠 H u · ˙ z = z
81 80 necon3bd φ ¬ P z X / ˙ | u Base G 𝑠 H u · ˙ z = z z X / ˙ | u Base G 𝑠 H u · ˙ z = z
82 73 81 mpd φ z X / ˙ | u Base G 𝑠 H u · ˙ z = z
83 rabn0 z X / ˙ | u Base G 𝑠 H u · ˙ z = z z X / ˙ u Base G 𝑠 H u · ˙ z = z
84 82 83 sylib φ z X / ˙ u Base G 𝑠 H u · ˙ z = z
85 63 raleqdv φ u H u · ˙ z = z u Base G 𝑠 H u · ˙ z = z
86 85 rexbidv φ z X / ˙ u H u · ˙ z = z z X / ˙ u Base G 𝑠 H u · ˙ z = z
87 84 86 mpbird φ z X / ˙ u H u · ˙ z = z
88 vex z V
89 88 elqs z X / ˙ g X z = g ˙
90 simplrr φ g X z = g ˙ u H u · ˙ z = z z = g ˙
91 90 oveq2d φ g X z = g ˙ u H u · ˙ z = z u · ˙ z = u · ˙ g ˙
92 simprr φ g X z = g ˙ u H u · ˙ z = z u · ˙ z = z
93 simpll φ g X z = g ˙ u H u · ˙ z = z φ
94 simprl φ g X z = g ˙ u H u · ˙ z = z u H
95 simplrl φ g X z = g ˙ u H u · ˙ z = z g X
96 1 2 3 4 5 6 7 sylow2blem1 φ u H g X u · ˙ g ˙ = u + ˙ g ˙
97 93 94 95 96 syl3anc φ g X z = g ˙ u H u · ˙ z = z u · ˙ g ˙ = u + ˙ g ˙
98 91 92 97 3eqtr3d φ g X z = g ˙ u H u · ˙ z = z z = u + ˙ g ˙
99 90 98 eqtr3d φ g X z = g ˙ u H u · ˙ z = z g ˙ = u + ˙ g ˙
100 28 ad2antrr φ g X z = g ˙ u H u · ˙ z = z ˙ Er X
101 100 95 erth φ g X z = g ˙ u H u · ˙ z = z g ˙ u + ˙ g g ˙ = u + ˙ g ˙
102 99 101 mpbird φ g X z = g ˙ u H u · ˙ z = z g ˙ u + ˙ g
103 14 ad2antrr φ g X z = g ˙ u H u · ˙ z = z G Grp
104 39 ad2antrr φ g X z = g ˙ u H u · ˙ z = z K X
105 eqid inv g G = inv g G
106 1 105 5 6 eqgval G Grp K X g ˙ u + ˙ g g X u + ˙ g X inv g G g + ˙ u + ˙ g K
107 103 104 106 syl2anc φ g X z = g ˙ u H u · ˙ z = z g ˙ u + ˙ g g X u + ˙ g X inv g G g + ˙ u + ˙ g K
108 102 107 mpbid φ g X z = g ˙ u H u · ˙ z = z g X u + ˙ g X inv g G g + ˙ u + ˙ g K
109 108 simp3d φ g X z = g ˙ u H u · ˙ z = z inv g G g + ˙ u + ˙ g K
110 oveq2 x = inv g G g + ˙ u + ˙ g g + ˙ x = g + ˙ inv g G g + ˙ u + ˙ g
111 110 oveq1d x = inv g G g + ˙ u + ˙ g g + ˙ x - ˙ g = g + ˙ inv g G g + ˙ u + ˙ g - ˙ g
112 eqid x K g + ˙ x - ˙ g = x K g + ˙ x - ˙ g
113 ovex g + ˙ inv g G g + ˙ u + ˙ g - ˙ g V
114 111 112 113 fvmpt inv g G g + ˙ u + ˙ g K x K g + ˙ x - ˙ g inv g G g + ˙ u + ˙ g = g + ˙ inv g G g + ˙ u + ˙ g - ˙ g
115 109 114 syl φ g X z = g ˙ u H u · ˙ z = z x K g + ˙ x - ˙ g inv g G g + ˙ u + ˙ g = g + ˙ inv g G g + ˙ u + ˙ g - ˙ g
116 1 5 34 105 grprinv G Grp g X g + ˙ inv g G g = 0 G
117 103 95 116 syl2anc φ g X z = g ˙ u H u · ˙ z = z g + ˙ inv g G g = 0 G
118 117 oveq1d φ g X z = g ˙ u H u · ˙ z = z g + ˙ inv g G g + ˙ u + ˙ g = 0 G + ˙ u + ˙ g
119 1 105 grpinvcl G Grp g X inv g G g X
120 103 95 119 syl2anc φ g X z = g ˙ u H u · ˙ z = z inv g G g X
121 65 ad2antrr φ g X z = g ˙ u H u · ˙ z = z H X
122 121 94 sseldd φ g X z = g ˙ u H u · ˙ z = z u X
123 1 5 grpcl G Grp u X g X u + ˙ g X
124 103 122 95 123 syl3anc φ g X z = g ˙ u H u · ˙ z = z u + ˙ g X
125 1 5 grpass G Grp g X inv g G g X u + ˙ g X g + ˙ inv g G g + ˙ u + ˙ g = g + ˙ inv g G g + ˙ u + ˙ g
126 103 95 120 124 125 syl13anc φ g X z = g ˙ u H u · ˙ z = z g + ˙ inv g G g + ˙ u + ˙ g = g + ˙ inv g G g + ˙ u + ˙ g
127 1 5 34 grplid G Grp u + ˙ g X 0 G + ˙ u + ˙ g = u + ˙ g
128 103 124 127 syl2anc φ g X z = g ˙ u H u · ˙ z = z 0 G + ˙ u + ˙ g = u + ˙ g
129 118 126 128 3eqtr3d φ g X z = g ˙ u H u · ˙ z = z g + ˙ inv g G g + ˙ u + ˙ g = u + ˙ g
130 129 oveq1d φ g X z = g ˙ u H u · ˙ z = z g + ˙ inv g G g + ˙ u + ˙ g - ˙ g = u + ˙ g - ˙ g
131 1 5 10 grppncan G Grp u X g X u + ˙ g - ˙ g = u
132 103 122 95 131 syl3anc φ g X z = g ˙ u H u · ˙ z = z u + ˙ g - ˙ g = u
133 115 130 132 3eqtrd φ g X z = g ˙ u H u · ˙ z = z x K g + ˙ x - ˙ g inv g G g + ˙ u + ˙ g = u
134 ovex g + ˙ x - ˙ g V
135 134 112 fnmpti x K g + ˙ x - ˙ g Fn K
136 fnfvelrn x K g + ˙ x - ˙ g Fn K inv g G g + ˙ u + ˙ g K x K g + ˙ x - ˙ g inv g G g + ˙ u + ˙ g ran x K g + ˙ x - ˙ g
137 135 109 136 sylancr φ g X z = g ˙ u H u · ˙ z = z x K g + ˙ x - ˙ g inv g G g + ˙ u + ˙ g ran x K g + ˙ x - ˙ g
138 133 137 eqeltrrd φ g X z = g ˙ u H u · ˙ z = z u ran x K g + ˙ x - ˙ g
139 138 expr φ g X z = g ˙ u H u · ˙ z = z u ran x K g + ˙ x - ˙ g
140 139 ralimdva φ g X z = g ˙ u H u · ˙ z = z u H u ran x K g + ˙ x - ˙ g
141 140 imp φ g X z = g ˙ u H u · ˙ z = z u H u ran x K g + ˙ x - ˙ g
142 141 an32s φ u H u · ˙ z = z g X z = g ˙ u H u ran x K g + ˙ x - ˙ g
143 dfss3 H ran x K g + ˙ x - ˙ g u H u ran x K g + ˙ x - ˙ g
144 142 143 sylibr φ u H u · ˙ z = z g X z = g ˙ H ran x K g + ˙ x - ˙ g
145 144 expr φ u H u · ˙ z = z g X z = g ˙ H ran x K g + ˙ x - ˙ g
146 145 reximdva φ u H u · ˙ z = z g X z = g ˙ g X H ran x K g + ˙ x - ˙ g
147 146 ex φ u H u · ˙ z = z g X z = g ˙ g X H ran x K g + ˙ x - ˙ g
148 147 com23 φ g X z = g ˙ u H u · ˙ z = z g X H ran x K g + ˙ x - ˙ g
149 89 148 syl5bi φ z X / ˙ u H u · ˙ z = z g X H ran x K g + ˙ x - ˙ g
150 149 rexlimdv φ z X / ˙ u H u · ˙ z = z g X H ran x K g + ˙ x - ˙ g
151 87 150 mpd φ g X H ran x K g + ˙ x - ˙ g