Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
|
2 |
|
sylow3.g |
|
3 |
|
sylow3.xf |
|
4 |
|
sylow3.p |
|
5 |
|
sylow3.n |
|
6 |
1
|
slwn0 |
|
7 |
2 3 4 6
|
syl3anc |
|
8 |
|
n0 |
|
9 |
7 8
|
sylib |
|
10 |
2
|
adantr |
|
11 |
3
|
adantr |
|
12 |
4
|
adantr |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
oveq2 |
|
16 |
15
|
oveq1d |
|
17 |
16
|
cbvmptv |
|
18 |
|
oveq1 |
|
19 |
|
id |
|
20 |
18 19
|
oveq12d |
|
21 |
20
|
mpteq2dv |
|
22 |
17 21
|
eqtrid |
|
23 |
22
|
rneqd |
|
24 |
|
mpteq1 |
|
25 |
24
|
rneqd |
|
26 |
23 25
|
cbvmpov |
|
27 |
|
simpr |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
1 10 11 12 13 14 26 27 28 29
|
sylow3lem4 |
|
31 |
5 30
|
eqbrtrid |
|
32 |
5
|
oveq1i |
|
33 |
23 25
|
cbvmpov |
|
34 |
|
eqid |
|
35 |
1 10 11 12 13 14 27 33 34
|
sylow3lem6 |
|
36 |
32 35
|
eqtrid |
|
37 |
31 36
|
jca |
|
38 |
9 37
|
exlimddv |
|