Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
|
2 |
|
sylow3.g |
|
3 |
|
sylow3.xf |
|
4 |
|
sylow3.p |
|
5 |
|
sylow3lem1.a |
|
6 |
|
sylow3lem1.d |
|
7 |
|
sylow3lem1.m |
|
8 |
|
ovex |
|
9 |
2 8
|
jctir |
|
10 |
1
|
fislw |
|
11 |
2 3 4 10
|
syl3anc |
|
12 |
11
|
biimpa |
|
13 |
12
|
adantrl |
|
14 |
13
|
simpld |
|
15 |
|
simprl |
|
16 |
|
eqid |
|
17 |
1 5 6 16
|
conjsubg |
|
18 |
14 15 17
|
syl2anc |
|
19 |
1 5 6 16
|
conjsubgen |
|
20 |
14 15 19
|
syl2anc |
|
21 |
3
|
adantr |
|
22 |
1
|
subgss |
|
23 |
14 22
|
syl |
|
24 |
21 23
|
ssfid |
|
25 |
1
|
subgss |
|
26 |
18 25
|
syl |
|
27 |
21 26
|
ssfid |
|
28 |
|
hashen |
|
29 |
24 27 28
|
syl2anc |
|
30 |
20 29
|
mpbird |
|
31 |
13
|
simprd |
|
32 |
30 31
|
eqtr3d |
|
33 |
1
|
fislw |
|
34 |
2 3 4 33
|
syl3anc |
|
35 |
34
|
adantr |
|
36 |
18 32 35
|
mpbir2and |
|
37 |
36
|
ralrimivva |
|
38 |
7
|
fmpo |
|
39 |
37 38
|
sylib |
|
40 |
2
|
adantr |
|
41 |
|
eqid |
|
42 |
1 41
|
grpidcl |
|
43 |
40 42
|
syl |
|
44 |
|
simpr |
|
45 |
|
simpr |
|
46 |
|
simpl |
|
47 |
46
|
oveq1d |
|
48 |
47 46
|
oveq12d |
|
49 |
45 48
|
mpteq12dv |
|
50 |
49
|
rneqd |
|
51 |
|
vex |
|
52 |
51
|
mptex |
|
53 |
52
|
rnex |
|
54 |
50 7 53
|
ovmpoa |
|
55 |
43 44 54
|
syl2anc |
|
56 |
2
|
ad2antrr |
|
57 |
|
slwsubg |
|
58 |
57
|
adantl |
|
59 |
1
|
subgss |
|
60 |
58 59
|
syl |
|
61 |
60
|
sselda |
|
62 |
1 5 41
|
grplid |
|
63 |
56 61 62
|
syl2anc |
|
64 |
63
|
oveq1d |
|
65 |
1 41 6
|
grpsubid1 |
|
66 |
56 61 65
|
syl2anc |
|
67 |
64 66
|
eqtrd |
|
68 |
67
|
mpteq2dva |
|
69 |
|
mptresid |
|
70 |
68 69
|
eqtr4di |
|
71 |
70
|
rneqd |
|
72 |
|
rnresi |
|
73 |
71 72
|
eqtrdi |
|
74 |
55 73
|
eqtrd |
|
75 |
|
ovex |
|
76 |
|
oveq2 |
|
77 |
76
|
oveq1d |
|
78 |
75 77
|
abrexco |
|
79 |
|
simprr |
|
80 |
|
simplr |
|
81 |
|
simpr |
|
82 |
|
simpl |
|
83 |
82
|
oveq1d |
|
84 |
83 82
|
oveq12d |
|
85 |
81 84
|
mpteq12dv |
|
86 |
85
|
rneqd |
|
87 |
51
|
mptex |
|
88 |
87
|
rnex |
|
89 |
86 7 88
|
ovmpoa |
|
90 |
79 80 89
|
syl2anc |
|
91 |
|
eqid |
|
92 |
91
|
rnmpt |
|
93 |
90 92
|
eqtrdi |
|
94 |
93
|
rexeqdv |
|
95 |
94
|
abbidv |
|
96 |
40
|
adantr |
|
97 |
96
|
adantr |
|
98 |
|
simprl |
|
99 |
1 5
|
grpcl |
|
100 |
96 98 79 99
|
syl3anc |
|
101 |
100
|
adantr |
|
102 |
61
|
adantlr |
|
103 |
1 5
|
grpcl |
|
104 |
97 101 102 103
|
syl3anc |
|
105 |
79
|
adantr |
|
106 |
98
|
adantr |
|
107 |
1 5 6
|
grpsubsub4 |
|
108 |
97 104 105 106 107
|
syl13anc |
|
109 |
1 5
|
grpass |
|
110 |
97 106 105 102 109
|
syl13anc |
|
111 |
110
|
oveq1d |
|
112 |
1 5
|
grpcl |
|
113 |
97 105 102 112
|
syl3anc |
|
114 |
1 5 6
|
grpaddsubass |
|
115 |
97 106 113 105 114
|
syl13anc |
|
116 |
111 115
|
eqtrd |
|
117 |
116
|
oveq1d |
|
118 |
108 117
|
eqtr3d |
|
119 |
118
|
eqeq2d |
|
120 |
119
|
rexbidva |
|
121 |
120
|
abbidv |
|
122 |
78 95 121
|
3eqtr4a |
|
123 |
|
eqid |
|
124 |
123
|
rnmpt |
|
125 |
|
eqid |
|
126 |
125
|
rnmpt |
|
127 |
122 124 126
|
3eqtr4g |
|
128 |
39
|
ad2antrr |
|
129 |
128 79 80
|
fovrnd |
|
130 |
|
simpr |
|
131 |
|
simpl |
|
132 |
131
|
oveq1d |
|
133 |
132 131
|
oveq12d |
|
134 |
130 133
|
mpteq12dv |
|
135 |
|
oveq2 |
|
136 |
135
|
oveq1d |
|
137 |
136
|
cbvmptv |
|
138 |
134 137
|
eqtrdi |
|
139 |
138
|
rneqd |
|
140 |
|
ovex |
|
141 |
140
|
mptex |
|
142 |
141
|
rnex |
|
143 |
139 7 142
|
ovmpoa |
|
144 |
98 129 143
|
syl2anc |
|
145 |
|
simpr |
|
146 |
|
simpl |
|
147 |
146
|
oveq1d |
|
148 |
147 146
|
oveq12d |
|
149 |
145 148
|
mpteq12dv |
|
150 |
149
|
rneqd |
|
151 |
51
|
mptex |
|
152 |
151
|
rnex |
|
153 |
150 7 152
|
ovmpoa |
|
154 |
100 80 153
|
syl2anc |
|
155 |
127 144 154
|
3eqtr4rd |
|
156 |
155
|
ralrimivva |
|
157 |
74 156
|
jca |
|
158 |
157
|
ralrimiva |
|
159 |
39 158
|
jca |
|
160 |
1 5 41
|
isga |
|
161 |
9 159 160
|
sylanbrc |
|